In the context of ongoing research focused on high-Ni positive electrodes with over 90% nickel content, the application of Si-negative electrodes is imperative to increase the energy density of batteries.
1. Introduction The current state-of-the-art negative electrode technology of lithium-ion batteries (LIBs) is carbon-based (i.e., synthetic graphite and natural graphite) and represents >95% of the negative electrode market .
Inspired by the possibilities of value-added of this raw material, we propose the facile preparation of silicon/carbon nanocomposites using carbon-coated silicon nanoparticles (<100 nm) and a petroleum pitch as anode materials for Li-ion batteries.
Pitch-based carbon/nano-silicon composites are proposed as a high performance and realistic electrode material of Li-ion battery anodes. Composites are prepared in a simple way by the pyrolysis under argon atmosphere of silicon nanoparticles, obtained by a laser pyrolysis technique, and a low cost carbon source: petroleum pitch.
The effect of the size and the carbon coating of the silicon nanoparticles on the electrochemical performance in Li-ion batteries is highlighted, proving that the carbon coating enhances cycling stability.
Silicon oxides: a promising family of anode materials for lithium-ion batteries Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery Stable and efficient li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites
Silicon-carbon negative electrode material of lithium ion battery …
The invention discloses a silicon-carbon negative electrode material of a lithium ion battery and a preparation method thereof, and solves the technological problem of improving the charge...
Surface-Coating Strategies of Si-Negative Electrode …
Silicon (Si) is recognized as a promising candidate for next-generation lithium-ion batteries (LIBs) owing to its high theoretical specific capacity (~4200 mAh g −1), low working potential (<0.4 V vs. Li/Li +), and …
In‐Vitro Electrochemical Prelithiation: A Key …
In-vitro electrochemical prelithiation has been demonstrated as a remarkable approach in enhancing the electrochemical performance of Silicon-rich Silicon/Graphite blend negative electrodes in Li-Ion batteries. The …
Si-decorated CNT network as negative electrode for lithium-ion battery …
We have developed a method which is adaptable and straightforward for the production of a negative electrode material based on Si/carbon nanotube (Si/CNTs) composite for Li-ion batteries. Comparatively inexpensive silica and magnesium powder were used in typical hydrothermal method along with carbon nanotubes for the production of silicon nanoparticles. …
Pitch-based carbon/nano-silicon composite, an efficient anode …
Pitch-based carbon/nano-silicon composites are proposed as a high performance and realistic electrode material of Li-ion battery anodes. Composites are prepared in a simple way by the pyrolysis under argon atmosphere of silicon nanoparticles, obtained by a laser pyrolysis technique, and a low cost carbon source: petroleum pitch. The ...
Overview of electrode advances in commercial Li-ion batteries
The development in Li-ion battery technology will not only improve the performance and cost-effectiveness of these batteries, but also have a positive feedback effect on the development of new technologies that are dependent on energy storage. Li-ion battery research has significantly focused on the development of high-performance electrode …
Design of ultrafine silicon structure for lithium battery and …
As the main body of lithium storage, negative electrode materials have become the key to improving the performance of lithium batteries. The high specific capacity and low …
A solid-state lithium-ion battery with micron-sized silicon anode ...
Firstly, the μm-Si (Canrd New Energy Technology Co., Ltd.), carbon nanotubes (CNTs) and Super P with a weight ratio of 70:7.5:7.5 were ball-milled at 500 rpm for 10 h in Ar atmosphere to obtain ...
In‐Vitro Electrochemical Prelithiation: A Key Performance‐Boosting ...
In-vitro electrochemical prelithiation has been demonstrated as a remarkable approach in enhancing the electrochemical performance of Silicon-rich Silicon/Graphite blend negative electrodes in Li-Ion batteries. The effectiveness of this strategy is significantly highlighted when Carbon Nanotubes are utilized as an electrode additive material.
Sibao Science and Technology: a pilot production line of 50 tons / …
With the development of technology, the upgrading of lithium battery anode material is an inevitable trend, and the upgrading of graphite negative electrode to silicon-based negative electrode system is the main direction. The specific capacity of silicon-carbon negative electrode can be several times that of graphite electrode, and its application in lithium battery …
Roundly exploring the synthesis, structural design, performance ...
The Si@C/G composite material incorporates carbon-coated Si nanoparticles evenly dispersed in a graphene sheet matrix, significantly enhancing the cyclability and …
In situ-formed nitrogen-doped carbon/silicon-based materials …
The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3 ...
Prelithiated Carbon Nanotube‐Embedded Silicon‐based Negative …
Multi-walled carbon Nanotubes (MWCNTs) are hailed as beneficial conductive agents in Silicon (Si)-based negative electrodes due to their unique features enlisting high electronic conductivity and the ability to offer additional space for accommodating the massive …
In situ-formed nitrogen-doped carbon/silicon-based materials as ...
The development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. …
Si particle size blends to improve cycling performance as negative ...
Silicon (Si) negative electrode has high theoretical discharge capacity (4200 mAh g-1) and relatively low electrode potential (< 0.35 V vs. Li + / Li) [3]. Furthermore, Si is one of the promising negative electrode materials for LIBs to replace the conventional graphite (372 mAh g-1) because it is naturally abundant and inexpensive [4]. The major difference between Si …
Pitch-based carbon/nano-silicon composite, an …
Pitch-based carbon/nano-silicon composites are proposed as a high performance and realistic electrode material of Li-ion battery anodes. Composites are prepared in a simple way by the pyrolysis under argon …
Production of high-energy Li-ion batteries comprising silicon ...
Rechargeable Li-based battery technologies utilising silicon, silicon-based, and Si-derivative anodes coupled with high-capacity/high-voltage insertion-type cathodes have …
Design of ultrafine silicon structure for lithium battery and …
As the main body of lithium storage, negative electrode materials have become the key to improving the performance of lithium batteries. The high specific capacity and low lithium insertion potential of silicon materials make them the best choice to replace traditional graphite negative electrodes.
Materials of Tin-Based Negative Electrode of Lithium-Ion Battery …
Abstract Among high-capacity materials for the negative electrode of a lithium-ion battery, Sn stands out due to a high theoretical specific capacity of 994 mA h/g and the presence of a low-potential discharge plateau. However, a significant increase in volume during the intercalation of lithium into tin leads to degradation and a serious decrease in capacity. An …
Surface-Coating Strategies of Si-Negative Electrode Materials in …
Silicon (Si) is recognized as a promising candidate for next-generation lithium-ion batteries (LIBs) owing to its high theoretical specific capacity (~4200 mAh g −1), low working potential (<0.4 V vs. Li/Li +), and abundant reserves.
A Thorough Analysis of Two Different Pre‐Lithiation Techniques …
Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries Gerrit Michael Overhoff,[a] Roman Nölle,[b] Vassilios Siozios,[b] Martin Winter,*[a, b] and Tobias Placke*[b] Silicon (Si) is one of the most promising candidates for application as high-capacity negative electrode (anode) material in lithium ion batteries (LIBs) due to ...
Silicon-carbon negative electrode has become the most …
Silicon-based negative electrode has the advantages of high energy density, wide distribution of raw materials and suitable Discharge platform, so it is considered to be a promising next-generation lithium-ion battery anode material. According to the theme database of the Financial Associated Press, among the relevant listed companies:
Silicon-carbon negative electrode has become the most promising …
Silicon-based negative electrode has the advantages of high energy density, wide distribution of raw materials and suitable Discharge platform, so it is considered to be a …
Research progress on carbon materials as negative electrodes in …
Due to their abundance, low cost, and stability, carbon materials have been widely studied and evaluated as negative electrode materials for LIBs, SIBs, and PIBs, including graphite, hard carbon (HC), soft carbon (SC), graphene, and so forth. 37-40 Carbon materials have different structures (graphite, HC, SC, and graphene), which can meet the needs for efficient storage of …
Prelithiated Carbon Nanotube‐Embedded Silicon‐based Negative Electrodes …
Multi-walled carbon Nanotubes (MWCNTs) are hailed as beneficial conductive agents in Silicon (Si)-based negative electrodes due to their unique features enlisting high electronic conductivity and the ability to offer additional space for accommodating the massive volume expansion of Si during (de-)lithiation. However, both MWCNTs and ...
Production of high-energy Li-ion batteries comprising silicon ...
Rechargeable Li-based battery technologies utilising silicon, silicon-based, and Si-derivative anodes coupled with high-capacity/high-voltage insertion-type cathodes have reaped significant...